Structure of a Thiolate-Bridged Polymeric Copper(I) Compound, catena-(2,9-Dimethyl-1,10-phenanthroline)- μ-(thiophenolato)-copper(I)

By Oren P. Anderson,* Karren K. Brito and Susan K. Laird
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA

(Received 28 July 1989; accepted 12 October 1989)

Abstract

Cu}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right], \quad M_{r}=380 \cdot 97\), monoclinic, $\quad P 2_{1}, \quad a=10.047$ (1), $\quad b=15.797$ (2), $c=10.581(1) \AA, \quad \beta=90.78(1)^{\circ}, \quad V=1679.2 \AA^{3}$, $Z=4, D_{m}\left(\mathrm{CCl}_{4} / \mathrm{C}_{5} \mathrm{H}_{12}\right)=1.50, D_{x}=1.51 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.7107 \AA, \mu=14 \cdot 2 \mathrm{~cm}^{-1}, F(000)=784$, $T=293$ (1) K, $R=0.026, \quad w R=0.026$ for 2709 observed reflections. The title compound, $\left[\mathrm{Cu}\left(\mathrm{Me}_{2}{ }^{-}\right.\right.$ phen $\left.)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)\right]_{n}$, exists as chains of $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \text { phen }\right)\right]^{+}$ units linked by thiophenolate S atoms. Large bridging angles at thiolate S atoms $[\mathrm{Cu}(1)-\mathrm{S}-\mathrm{Cu}(2)(\mathrm{av})$. $\left.=134(1)^{\circ}\right]$ preclude any $\mathrm{Cu}-\mathrm{Cu}$ bonding $[\mathrm{Cu} \cdots \mathrm{Cu}=$ $4 \cdot 246$ (1), $4 \cdot 284$ (1) \AA] along the chain. The Cu^{1} atoms exhibit highly distorted tetrahedral coordination, with the largest deviations from tetrahedral stereochemistry involving the $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ and $\mathrm{S}-$ $\mathrm{Cu}-\mathrm{S}$ angles $[\mathrm{N}-\mathrm{Cu}-\mathrm{N}(\mathrm{av})=.78 \cdot 0(2), \mathrm{S}-\mathrm{Cu}-$ $\left.S(a v)=.126(3)^{\circ}\right]$.

Introduction. The structural chemistry of systems containing thiolate ($R \mathrm{~S}^{-}$) ligands and copper(I) is surprisingly rich. Thiophenolato complexes of Cu^{I}, for example, exhibit a variety of structural types, ranging from simple mononuclear species such as $\mathrm{Cu}(\mathrm{S} R)_{2}^{-}\left(\mathrm{S} R^{-}=2,3,5,6\right.$-tetramethylbenzenethiolate; Koch, Fikar, Millar \& O'Sullivan, 1984) and $\mathrm{Cu}(\mathrm{SPh})_{3}^{2-}\left(\mathrm{SPh}^{-}=\right.$thiophenolate; \quad Coucouvanis, Murphy \& Kanodia, 1980; Garner, Nicholson \& Clegg, 1984) to clusters exhibiting a variety of structures (Dance, Scudder \& Fitzpatrick, 1985).

The presence of other ligands with high affinities for Cu^{1} further complicates the synthetic and structural picture for copper(I) thiolates. Triphenylphosphine, for example, reacts with polymeric insoluble CuSPh, and both dinuclear (Dance, Guerney, Rae \& Scidder, 1983) and tetranuclear (Dance, Scudder \& Fitzpatrick, 1985) mixed-ligand products have been obtained.

With the nitrogenous base 1,10 -phenanthroline (phen) and o-tolylthiolate (S-o-tol) ligands, a neutral dinuclear unit also resulted (Chadha, Kumar \& Tuck, 1987). In research designed to explore the structural possibilities for thiolate coordination to

[^0]0108-2701/90/091600-04\$03.00
Cu^{I} atoms, we reacted $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]^{+}$with 2,9-dimethyl-1,10-phenanthroline (Me_{2} phen) and the thiophenolate $\left(\mathrm{SPh}^{-}\right)$anion. Instead of the expected polynuclear molecular unit, an extended polymeric chain was formed, the structure of which is the subject of this report. A preliminary report has been published (Reibenspies, Anderson, Laird \& Brito, 1983).

Experimental. $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{ClO}_{4}$ prepared by literature methods (Hemmerich \& Sigwart, 1963). 2,9-Dimethyl-1,10-phenanthroline (Me_{2} phen), thiophenol (HSPh) purchased from Aldrich Chemical Co., used without further purification. Potassium thiophenolate [$\mathrm{K}(\mathrm{SPh})$] prepared by reaction of KOH and HSPh in ethanol, followed by evaporation of solvent under reduced pressure.

The title compound, $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{CuN}_{2} \mathrm{~S}$, was synthesized as follows. $0.65 \mathrm{~g}(3.1 \mathrm{mmol})$ of Me_{2} phen, $0.36 \mathrm{~g}(1.1 \mathrm{mmol})$ of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)$ dissolved in 30 ml degassed $\mathrm{CH}_{3} \mathrm{CN}$ under Ar in a Schlenk flask. 2.5 ml freshly prepared $0.39 \mathrm{M} \mathrm{K}(\mathrm{SPh})$ solution (absolute ethanol) diluted by addition to 40 ml degassed $\mathrm{CH}_{3} \mathrm{CN}$, placed in constant-rate addition funnel, added (several hours) to solution containing Me_{2} phen and copper (\mathbf{I}). Small dark-red crystals formed on standing at room temperature.

Data-collection crystal $[0.14(100 \rightarrow \overline{1} 00) \times 0.27$ $(010 \rightarrow 0 \overline{1} 0) \times 0.16 \mathrm{~mm} \quad(001 \rightarrow 00 \overline{1})] \quad$ obtained by vapor diffusion of HSPh into $\mathrm{CH}_{3} \mathrm{CN}$ solution containing 1:3:1 molar mixture of $\mathrm{Cu}^{\mathrm{I}}, \mathrm{Me}_{2}$ phen and triethylamine. Nicolet $R 3 m$ diffractometer, cell constants from least-squares fitting of angles for 22 reflections [$2 \theta(\mathrm{av})=.19 \cdot 66^{\circ}$]. Data collected for 3.5 $\leq 2 \theta \leq 50^{\circ}, \quad-13 \leq h \leq 13, \quad 0 \leq k \leq 20, \quad 0 \leq l \leq 14$, $\theta / 2 \theta$ scans. Control reflections ($05 \overline{1}, 181,206$) monitored every 100 reflections, no significant variation. Lorentz and polarization corrections, no absorption or extinction corrections; of 3277 measured reflections, 2709 observed $\left[F_{o}>5 \sigma\left(F_{o}\right)\right.$] used in calculations.

Structure solved by direct methods (RANT); blockcascade (max. 103 parameters/cycle), weighted $\{w=$ $\left[\sigma^{2}(F)+g F^{2}\right]^{-1}, \quad g=8 \times 10^{-5}$ (refined) $\} \quad$ least© 1990 International Union of Crystallography

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)(\mathrm{SPh})\right]_{n}$
E.s.d.'s in the least-significant digits are given in parentheses. $U_{\text {eq }}$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	$U_{\text {eq }}$
$\mathrm{Cu}(1)$	1.05570 (4)	0.60050	0.39987 (4)	0.0353 (1)
$\mathrm{Cu}(2)$	0.91982 (4)	0.85420 (4)	0.43196 (4)	0.0357 (1)
S(1)	0.92114 (9)	0.70887 (6)	$0 \cdot 46816$ (9)	0.0361 (3)
S(2)	1.0225 (1)	0.45550 (6)	0.41827 (9)	0.0352 (3)
$\mathrm{N}(1)$	1.1440 (4)	0.6324 (2)	$0 \cdot 2222$ (3)	0.042 (1)
N(2)	1.2563 (3)	0.6190 (2)	$0 \cdot 4517$ (3)	0.035 (1)
$\mathrm{N}(3)$	0.7564 (3)	0.8897 (2)	$0 \cdot 3105$ (3)	0.034 (1)
$\mathrm{N}(4)$	1.0143 (3)	0.8669 (2)	0.2557 (3)	0.032 (1)
C(1)	0.8505 (3)	0.6832 (2)	0.6159 (3)	0.033 (1)
C(2)	0.7992 (4)	0.7452 (3)	0.6935 (4)	0.041 (1)
C(3)	0.7333 (4)	0.7229 (3)	0.8032 (4)	0.048 (1)
C(4)	0.7204 (4)	0.6405 (3)	0.8390 (4)	0.043 (1)
C(5)	0.7757 (4)	0.5788 (2)	0.7648 (4)	0.044 (1)
C(6)	0.8406 (3)	0.5989 (3)	0.6543 (3)	0.039 (1)
C(7)	0.8658 (4)	0.4272 (2)	0.3523 (3)	0.034 (1)
C(8)	0.7703 (4)	0.4872 (3)	0.3198 (4)	0.047 (1)
C(9)	0.6504 (4)	0.4645 (3)	0.2661 (5)	0.062 (2)
C(10)	0.6201 (4)	0.3813 (3)	$0 \cdot 2422$ (4)	0.052 (2)
C(11)	0.7137 (4)	0.3202 (3)	0.2751 (4)	0.046 (1)
C(12)	0.8348 (4)	0.3421 (3)	0.3296 (3)	0.041 (1)
C(13)	1.0855 (6)	0.6420 (3)	$0 \cdot 1089$ (4)	0.061 (2)
C(14)	1.1613 (8)	0.6599 (3)	0.0019 (5)	0.084 (3)
C(15)	$1 \cdot 2927$ (8)	0.6703 (4)	0.0104 (5)	0.091 (3)
C(16)	1.3583 (6)	0.6650 (3)	$0 \cdot 1282$ (5)	0.069 (2)
C(17)	1.4961 (7)	0.6840 (4)	0.1502 (7)	0.091 (3)
C(18)	$1 \cdot 5517$ (6)	0.6810 (3)	0.2671 (7)	0.087 (3)
C(19)	1.4740 (4)	0.6565 (3)	0.3740 (5)	0.059 (2)
C(20)	1.5238 (5)	0.6511 (3)	0.4965 (7)	0.079 (2)
C(21)	1.4425 (5)	0.6317 (3)	0.5917 (5)	0.066 (2)
C(22)	1.3073 (4)	0.6160 (2)	0.5683 (4)	0.044 (1)
C(23)	1.3368 (4)	0.6384 (2)	$0 \cdot 3552$ (4)	0.040 (1)
C(24)	1.2778 (4)	0.6440 (3)	0.2312 (4)	0.043 (1)
C(25)	0.9395 (5)	0.6338 (4)	0.1025 (5)	0.088 (2)
C(26)	1.2110 (4)	0.5975 (3)	$0 \cdot 6697$ (3)	0.051 (1)
C(27)	0.6301 (4)	0.9068 (3)	$0 \cdot 3408$ (4)	0.044 (1)
C(28)	0.5370 (4)	0.9355 (3)	0.2486 (5)	0.056 (2)
C(29)	0.5730 (4)	0.9440 (3)	0.1268 (4)	0.059 (2)
C(30)	0.7334 (4)	0.9262 (3)	0.0906 (4)	0.047 (1)
C(31)	0.7518 (5)	0.9358 (3)	-0.0351 (4)	0.057 (2)
C(32)	0.8797 (5)	0.9217 (3)	-0.0630 (4)	0.056 (2)
C(33)	0.9741 (4)	0.8984 (3)	0.0340 (4)	0.044 (1)
C(34)	1.1098 (5)	0.8861 (3)	0.0121 (4)	0.053 (2)
C(35)	1.1939 (4)	0.8646 (3)	$0 \cdot 1104$ (4)	0.049 (1)
C(36)	1.1428 (4)	0.8563 (3)	0.2326 (3)	0.037 (1)
C(37)	0.9305 (4)	0.8870 (2)	0.1576 (4)	0.037 (1)
C(38)	0.7929 (4)	0.9004 (2)	0.1871 (4)	0.037 (1)
C(39)	0.5929 (4)	0.8967 (3)	0.4752 (4)	0.056 (2)
C(40)	1.2290 (4)	0.8383 (3)	0.3442 (4)	0.045 (1)

squares refinement (444 parameters, data/parameters $=6 \cdot 1$) on F; all non -H atoms refined anisotropically, H atoms in calculated positions $\left[U(\mathrm{H})=1 \cdot 2 U_{\text {iso }}(\mathrm{C})\right]$. At convergence mean $\Delta / \sigma=0.028$, max. $\Delta / \sigma=$ 0.247 [rotation of methyl group $\mathbf{C}(25)$ about $\mathrm{C}(13)-\mathrm{C}(25)$ bond] over last five cycles $\}, R=0.026$, $w R=0.026, S=1.37$, slope of normal probability plot $=1 \cdot 19$, max. $\Delta \rho=0 \cdot 27[1 \cdot 16 \AA$ from $\mathrm{Cu}(2)]$, min. $\Delta \rho=-0 \cdot 19 \mathrm{e} \AA^{-3}$. Neutral-atom scattering factors, with anomalous-dispersion corrections, from International Tables for X-ray Crystallography (1974); software for diffractometer provided with Nicolet $R 3 m ; S H E L X T L$ programs (Sheldrick, 1983) used for structure solution, refinement and plotting.

Discussion. The structure and numbering scheme within a single asymmetric unit of the title com-

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)(\mathrm{SPh})\right]_{n}$
E.s.d.'s in the least-significant digits are given in parentheses.

Fig. 1. A thermal ellipsoid plot (50% probability) depicting the arrangement and numbering scheme for the atoms of the asymmetric unit of $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)(\mathrm{SPh})\right]_{n}$.
pound, $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)(\mathrm{SPh})\right]_{n}$, are depicted in Fig. 1. Final atomic coordinates and equivalent isotropic thermal parameters for all non- H atoms are given in Table 1, while selected bond lengths and angles are listed in Table 2.*

Neutral polynuclear molecular units, such as the dinuclear $[\mathrm{Cu}(\text { phen })(\mathrm{S}-o-\text { tol })]_{2}$ (Chadha, Kumar \& Tuck, 1987), are not found in the title compound, despite similar formulation. Instead, $\left[\mathrm{Cu}\left(\mathrm{Me}_{2}-\right.\right.$

[^1]phen)] ${ }^{+}$units are linked by SPh^{-}ions into longchain thiolate-bridged metallopolymers in the solid state (see Fig. 2, which shows a portion of one such chain). The $\mathrm{Cu}_{2} \mathrm{~S}_{2}$ elements of the chain (Fig. 1) are related by the action of the crystallographic twofold screw axis.
Similar long-chain polymers involving the $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)\right]^{+}$unit have been found in $\left[\mathrm{Cu}\left(\mathrm{Me}_{2}-\right.\right.$ phen)(CN) $]_{n}$ and $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)(\mathrm{NCS})\right]_{n}$ (Morpurgo, Dessy \& Fares, 1984), in which the bridging between $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)\right]^{+}$units is accomplished by ambidentate cyano and thoicyanato ligands, respectively. In both of those compounds, as well as in $\left[\mathrm{Cu}\left(\mathrm{Me}_{2}-\right.\right.$ phen $)_{2}\left(\mathrm{ClO}_{4}\right)$ (Dessy \& Fares, 1978), the restricted 'bite' of the bidentate Me_{2} phen ligand manifests itself in small $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angles, very similar to the values $\left[\mathrm{N}-\mathrm{Cu}-\mathrm{N}(\mathrm{av})=.78.0(2)^{\circ}\right] \quad$ observed here for $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)(\mathrm{SPh})\right]_{n}$.
Despite the small $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angles, the coordination geometry about copper(I) in $\left[\mathrm{Cu}\left(\mathrm{Me}_{2}-\right.\right.$ phen) $(\mathrm{SPh})]_{n}$ is best described as tetrahedral, though significant distortions are clearly present. While $\mathrm{S}-\mathrm{Cu}-\mathrm{N}$ angles cluster about the ideal tetrahedral value $\left[\mathrm{S}-\mathrm{Cu}-\mathrm{N}(\mathrm{av})=.110(4)^{\circ}\right]$, the $\mathrm{S}-\mathrm{Cu}-\mathrm{S}$ angles are much more open $[\mathrm{S}(1)-\mathrm{Cu}(1)-\mathrm{S}(2)=$ $\left.128.4(1)^{\circ}, \quad \mathrm{S}(1)-\mathrm{Cu}(2)-\mathrm{S}\left(2^{\prime}\right)=124.6(1)^{\circ}\right] \quad$ than would be expected for tetrahedral coordination. These large $\mathrm{S}-\mathrm{Cu}-\mathrm{S}$ angles are not simply a consequence of the restricted bite of the Me_{2} phen ligand, since in $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)(\mathrm{CN})\right]_{n}$ and $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)-\right.$ (NCS) $]_{n}$ the interbridge angles at Cu^{I} were only 111.9 (5) and 103.7 (2) ${ }^{\circ}$, respectively. The S atoms do not appear to make significant contacts along the chain $\left[S(1) \cdots S(2)=4 \cdot 165(1), \quad S(1) \cdots S\left(2^{\prime}\right)=\right.$ $4 \cdot 114$ (1) \AA], and thus repulsive $S \cdots S$ interactions are not likely to be the cause of the open $\mathrm{S}-\mathrm{Cu}-\mathrm{S}$ angles. Contacts between N and S atoms, which would be expected to close the $\mathrm{S}-\mathrm{Cu}-\mathrm{S}$ angles, are also not significant [e.g. $\mathrm{S}(1) \cdots \mathrm{N}(\mathrm{av})=.3 \cdot 63$ (9) \AA §]. It is possible that the packing of the phenyl groups of the SPh^{-}ligands and the fused aromatic rings of the Me_{2} phen ligands lead to the open $\mathrm{S}-\mathrm{Cu}-\mathrm{S}$ angles observed here, but specific causative interactions of this type are difficult to pinpoint.

Fig. 2. A plot showing the extended polymeric nature of $\left[\mathrm{Cu}\left(\mathrm{Me}_{2^{-}}\right.\right.$ phen)(SPh) $]_{n}$. The linked contents of three asymmetric units are depicted; the 2, axis relates each pair of Cu^{1} atoms and associated ligands to the next.

In the dinuclear complex $[\mathrm{Cu}(\text { phen })(\mathrm{S}-\mathrm{o} \text {-tol })]_{2}$, $\mathrm{Cu}-\mathrm{Cu}$ bonding draws the Cu^{I} atoms close together $[\mathrm{Cu} \cdots \mathrm{Cu}=2 \cdot 613(3) \AA]$ and makes the $\mathrm{Cu}-\mathrm{S}-\mathrm{Cu}$ angles acute $\left[\mathrm{Cu}(1)-\mathrm{S}-\mathrm{Cu}(2)=68 \cdot 1(1), 67 \cdot 8(1)^{\circ}\right]$. The absence of any such $\mathrm{Cu} \cdots \mathrm{Cu}$ bonding interactions in $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)(\mathrm{SPh})\right]_{n}[\mathrm{Cu} \cdots \mathrm{Cu}=4 \cdot 246$ (1), $4 \cdot 284$ (1) \AA] allows the $\mathrm{Cu}-\mathrm{S}-\mathrm{Cu}$ angles at the S atom to be much more open $[\mathrm{Cu}(1)-\mathrm{S}(1)-\mathrm{Cu}(2)=$ $133 \cdot 1$ (1), $\mathrm{Cu}(1)-\mathrm{S}(2)-\mathrm{Cu}\left(2^{\prime}\right)=134 \cdot 6$ (1) $\left.{ }^{\circ}\right]$.
Bond lengths between Cu^{I} and ligand atoms such as N and thiolate S are strongly dependent on all the usual factors - coordination number, coordination geometry, and the type(s) of other ligands present and may also depend on the counterion. For example, $\mathrm{Cu}-\mathrm{S}$ bond lengths in the trigonal planar anion $\left[\mathrm{Cu}(\mathrm{SPh})_{3}\right]^{2-}$ range from $2 \cdot 274(4)$ to 2.335 (4) \AA in the tetraphenylphosphonium salt (Coucouvanis, Murphy \& Kanodia, 1980), but are distinctly shorter [2.239 (2) to 2.258 (2) \AA] in the tetraethylammonium salt. The $\mathrm{Cu}-\mathrm{S}$ distances in $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)(\mathrm{SPh})\right]_{n}$ fall within a narrow range $[\mathrm{Cu}-\mathrm{S}(\mathrm{av})=.2 \cdot 32(1) \AA]$ at the upper end of the distribution of $\mathrm{Cu}-\mathrm{S}$ distances seen in $\left[\mathrm{Cu}(\mathrm{SPh})_{3}\right]^{2-}$, and are comparable in length to the $\mathrm{Cu}-\mathrm{S}$ distances in $\quad[\mathrm{Cu}(\mathrm{phen})(\mathrm{S}-\mathrm{o}-\mathrm{tol})]_{2} \quad[\mathrm{Cu}-\mathrm{S}=2.304$ (4) to $2 \cdot 379$ (5) A].
The $\mathrm{Cu}-\mathrm{N}$ distances in $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)(\mathrm{SPh})\right]_{n}$ $[\mathrm{Cu}-\mathrm{N}(\mathrm{av})=.2 \cdot 13(2) \AA]$ are distinctly longer than those in $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)_{2}\right]^{+}[\mathrm{Cu}-\mathrm{N}=2.053$ (6) $\AA]$ and $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)(\mathrm{NCS})\right]_{n} \quad[\mathrm{Cu}-\mathrm{N}(\mathrm{av})=$.2.077 (1) $\AA]$, but quite similar to the $\mathrm{Cu}-\mathrm{N}$ distances in $[\mathrm{Cu}(\text { phen })(\mathrm{S}-o-\text {-tol })]_{2}[\mathrm{Cu}-\mathrm{N}(\mathrm{av})=.2 \cdot 10(3) \AA]$ and $\left[\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{phen}\right)(\mathrm{CN})\right]_{n}[\mathrm{Cu}-\mathrm{N}(\mathrm{av})=.2 \cdot 126$ (7) $\AA]$.

The Nicolet $R 3 m / E \quad$ X-ray diffractometer and crystallographic computing system at Colorado State University were purchased with funds provided by the US National Science Foundation. OPA thanks the National Institute of General Medical Sciences of the US National Institutes of Health for support of this work.

References

Chadha, R. K., Kumar, R. \& Tuck, D. G. (1987). Can. J. Chem. 65, 1336-1342.
Coucouvanis, D., Murphy, C. N. \& Kanodia, S. (1980). Inorg. Chem. 19, 2993-2998.
Dance, I. G., Guerney, P. J., Rae, A. D. \& Scudder, M. L. (1983). Inorg. Chem. 22, 2883-2887.

Dance, I. G., Scudder, M. L. \& FitzPatrick, L. J. (1985). Inorg. Chem. 24, 2547-2550.
Dessy, G. \& Fares, V. (1978). Cryst. Struct. Commun. 8, 507-510.
Garner, C. D., Nicholson, J. R. \& Clegg, W. (1984). Inorg. Chem. 23, 2148-2150.
Hemmerich, P. \& Sigwart, C. (1963). Experientia, 19, 488-489.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 55, 99. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Koch, S. A., Fikar, R., Millar, M. \& O'Sullivan, T. (1984). Inorg. Chem. 23, 121-122.
Morpurgo, G. O., Dessy, G. \& Fares, V. (1984). J. Chem. Soc. Dalton Trans. pp. 785-791.

Reibenspies, J. H., Anderson, O. P., Laird, S. K. \& Brito, K. K. (1983). Proc. Am. Crystallogr. Assoc. Meet., Abstr. p. 49.

Sheldrick, G. M. (1983). SHELXTL Users Manual. Revision 4. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Structures of Four- and Five-Carbon Alkyldiammonium Tetrachlorocuprate(II) and Tetrabromocuprate(II) Salts

By John K. Garland
Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
Kenneth Emerson
Department of Chemistry, Montana State University, Bozeman, MT 59717, USA
and Mark R. Pressprich
Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA

(Received 17 August 1989; accepted 13 November 1989)

Abstract

Butanediammonium tetrabromocuprate(II), $\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{~N}_{2}^{2+}$. $\mathrm{CuBr}_{4}^{2-}, M_{r}=473$, monoclinic, $P 2_{1} / a, a=7.914$ (2), $b=7.887$ (4), $c=9.432$ (2) \AA, β $=102.83(2)^{\circ}, V=574 \AA^{3}, Z=2, D_{x}=2.74 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=157 \mathrm{~cm}^{-1}, \quad T=293 \mathrm{~K}$, $F(000)=442,1259$ unique reflections, of which 1192 with $F \geq 3 \sigma(F)$ were refined to a final $R=0.0439$ for the 3σ data set with empirical extinction corrections ($w R=0.0541$). The following structures used reflections with $F \geq 6 \sigma(F)$. 1,4-Butanediammonium tetrachlorocuprate(II), $\quad \mathrm{C}_{4} \mathrm{H}_{14} \mathrm{~N}_{2}^{2+} . \mathrm{CuCl}_{4}^{2-}, \quad M_{r}=296$, monoclinic, $P 2_{1} / a, a=7.588$ (1), $b=7.599$ (1), $c=$ $9 \cdot 268$ (1) $\AA, \beta=103 \cdot 14(1)^{\circ}, V=520 \AA^{3}, Z=2, D_{x}$ $=1.88 \mathrm{~g} \mathrm{~cm}^{-3}$, Мо $K \alpha, \mu=31.7 \mathrm{~cm}^{-1}, \quad F(000)=$ 298, 1184 unique reflections, 786 of 805 for the 6σ data set after discarding twin overlaps were refined to a final $R=0.0652(w R=0.0861)$. 1,5-Pentanediammonium tetrabromocuprate(II), $\mathrm{C}_{5} \mathrm{H}_{16} \mathrm{~N}_{2}^{2+}$. $\mathrm{Cu}-$ $\mathrm{Br}_{4}^{2-}, M_{r}=487$, monoclinic, $P 2_{1} / n, a=8.142$ (3), b $=7.560(2), c=21.736(10) \AA, \beta=101.49(3)^{\circ}, V=$ $1311 \AA^{3}, Z=4, \quad D_{x}=2.47 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha, \mu=$ $146 \mathrm{~cm}^{-1}, F(000)=916,3527$ unique reflections, 995 of 1030 for the 6σ data set were refined to a final R $=0.0734 \quad(w R=0.0948)$. 1,5-Pentanediammonium tetrachlorocuprate(II), $\mathrm{C}_{5} \mathrm{H}_{16} \mathrm{~N}_{2}^{2+}$. $\mathrm{CuCl}_{4}^{2-}, M_{r}=308$, monoclinic, $P 2_{1} / n, a=7.747$ (3), $b=7.203$ (2), $c=$ $21.761(6) \AA, \quad \beta=102 \cdot 12(2)^{\circ}, \quad V=1188 \AA^{3}, \quad Z=4$, $D_{x}=1.73 \mathrm{~g} \mathrm{~cm}^{-3}$, Мо $K \alpha, \mu=27.5 \mathrm{~cm}^{-1}, F(000)=$ 628,2842 unique reflections, 501 of 530 for the 6σ data set were refined to a final $R=0.0925$ ($w R=$ $0 \cdot 1096$). Each $\mathrm{Cu}^{\mathrm{II}}$ ion has two short and two long (semi-coordinate) bonds to halide ions forming sheets puckered from the $a b$ plane plus two short

bonds to halide ions axial to the sheets, completing a tetragonally elongated octahedral coordination. Adjacent sheets have axial halide ions in an eclipsed conformation. The diammonium ions provide links between sheets, hydrogen bonding to the halides. The C_{4} salts have the two ends of the diammonium ions equivalent by symmetry with C_{4} chains trans around the central bond and gauche for N versus C positioning around each terminal $\mathrm{C}-\mathrm{C}$ bond. The hydrogen bonds include one to an axial halide, arranged gauche to the $\mathrm{N}-\mathrm{C}-\mathrm{C}$ alignment, and two to sheet halides, one gauche and one trans to the $\mathrm{N}-\mathrm{C}-\mathrm{C}$ alignment. The C_{5} chains are trans at both of the $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ sites, one $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ site is trans and one gauche, and both N atoms have two hydrogen bonds to axial halides and one to a sheet halide. The C_{5} chains have about a 90° different direction of approach at the two ends.

Introduction. The monoammonium alkylammonium salts of copper(II) tetrahalides, $\left(\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{NH}_{3}\right)_{2} \mathrm{Cu} X_{4}$, form puckered antiferrodistortive layer perovskite structures with adjacent layers staggered which give strong ferromagnetic interactions in the copperhalogen sheet layer and weak magnetic interactions between layers (Willett, 1964; Steadman \& Willett, 1970; Barendrecht \& Shenk, 1970; de Jongh \& van Amstel, 1971; de Jongh, van Amstel \& Miedema, 1972; Drumheller, Dickey, Reckliss, Zaspel \& Glass, 1972; Zaspel \& Drumheller, 1977; Wong, Willett \& Drumheller, 1981). The structures contain layers of square-planar $\mathrm{Cu} X_{4}^{2-}$ anions. In each anion, two $. \mathrm{Cu}-X$ bonds are involved in bridges to adjacent (C) 1990 International Union of Crystallography

[^0]: * To whom all correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52746 (24 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

